Endoscopic Retrograde Cholangiopancreatography (ERCP) in Tertiary Care Hospital: Clinical Evidence and Literature Assessing Diagnostic Performance

Tami Lin, Adrian Bak, Brent Parker, Fahd Jowhari, Jeremy Dick, Katie Baba, Raj Brar, Justin Lambert, Murray Savard, Rafael Perini

Objectives

- To assess diagnostic performances of ERCP techniques in the setting of indeterminate biliary strictures (IDBS) at Kelowna General Hospital
- To carry out internal quality improvement by comparing our findings with corresponding literature values as well as diagnostic performances of other modalities of pancreatobiliary tissue acquisition

Introduction

- Pancreatobiliary malignancies often present with late disease, with only 30% being resectable tumours, contributing to poor prognosis and outcome¹
- ERCP is a mainstay for diagnosing and treating conditions of the bile and pancreatic duct
- Indeterminate biliary strictures (IDBS) are lesions whose nature remain ambiguous even after imaging, ERCP, and laboratory analysis, and run the risk of misdiagnosing cholangiocarcinomas or pancreatic adenocarcinomas²
- Current ERCP techniques have statistically offered sensitivities and specificities below desired values

Methods

- Retrospective study of 3723 ERCP procedures
- 222 patients (285 ERCP procedures) met study inclusion/exclusion criteria
- Patients were ≥19 years old who had undergone fluoroscopy-guided pancreatic and/or biliary ERCP sampling at KGH for which cytology brushing and/or tissue biopsies were obtained
- Demographic, clinical, and disease information was collected
- Three main ERCP techniques were analyzed: brushing alone, biopsy alone, or brushing and biopsy dual modality approach
- Test performances of ERCP sampling methods were determined by reviewing clinical reports

Results

- 125 (56%) male patients and 97 (44%) female patients
- Mean age 71 years old (range 40-95)

Table 1. Test performance of ERCP sampling modalities.

Clinical Characteristics	N (%)
Mass identified on CT	99 (45%)
History of pancreatitis	20 (9%)
History of primary sclerosing cholangitis	5 (2%)
Abnormal liver enzymes at presentation	157 (71%)
Abnormal lipase levels at presentation	48 (22%)
History of cancer	37 (17%)
History of metastases	23 (10%)

Table 2. Test performance of ERCP sampling modalities.

	Brushing Alone	Biopsy Alone	Biopsy and Brushing
Total (N)	85 (29%)	36 (13%)	164 (58%)
Diagnostic Results			
Sensitivity	73%	56%	79%
Specificity	96%	93%	94%
Accuracy	85%	83%	86%
Prevalence of cancer in this population	40 (47%)	9 (25%)	84 (51%)

Results (continued)

Table 3. Test performance of ERCP sampling modalities in the literature.

Modality	Sensitivity	Specificity	Accuracy
Brushing Alone ³⁻⁷	6 – 64%	100%	38 – 80%
Biopsy Alone ⁶⁻¹¹	43 – 81%	90 – 100%	65 – 81%
Biopsy and Brushing ¹²	54 – 65%	99 – 100%	70 – 73%
SOC for Visual Inspection ^{12,13}	78 – 100%	77 – 96%	80 – 97%
SOC Biopsy ^{12,13}	38 – 88%	82 – 100%	61 – 96%
EUS FNA ^{14,15}	75%	100%	79%

Discussion & Conclusion

- Combining modalities of tissue acquisition appears to improve both sensitivity and specificity, which is supported in existing literature
- Brush cytology remains first-line method of obtaining tissue at ERCP despite its low sensitivity
- There is a definite need for more effective screening and diagnostic measures in pancreatobiliary malignancies

References

- Canadian Cancer Statistics Advisory Committee, "Canadian Cancer Statistics 2018," Toronto, 2018
- 2. A. Sinh, A. Gelrud and B. Agarwal, "Biliary strictures: diagnostic considerations and approach," Gastroenterology Report, vol. 3, no. 1, pp. 22-31.

A. S. Burnett, T. J. Calvert and R. J. Chokshi, "Sensitivity of endoscopic retrograde cholangiopancreatography standard cytology: 10-y review of

the literature," Journal of Surgical Research, vol. 184, no. 1, pp. 304-311, 2013. L. J. Layfield, T. D. Wax, J. G. Lee and P. B. Cotton, "Accuracy and morphologic aspects of pancreatic and biliary duct brushings," Acta

G. Kocjan and A. N. Smith, "Bile duct brush cytology: potential pitfalls in diagnosis," Diagnostic Cytopathology, vol. 16, pp. 358-363, 1997

- cytologica, vol. 39, no. 1, pp. 11-18, 1995.
- T. Ponchon, P. Gagnon, F. Berger, M. Labadie, A. Liaras, A. Chavaillon and R. Bory, "Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: results of a prospective study," Gastrointestinal Endoscopy, vol. 42, no. 6, pp. 565-572, 1995.
- V. Pugliese, M. Conio, G. Nicolò, S. Saccomanno and B. Gatteschi, "Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: a prospective study," Gastrointestinal Endoscopy, vol. 42, no. 6, pp. 520-526, 1995.
- Y. Kubota, M. Takaoka, K. Tani, M. Ogura, H. Kin, K. Fujimura, T. Mizuno and K. Inoue, "Endoscopic transpapillary biopsy for diagnosis of patients with pancreaticobiliary ductal strictures," Aerican Journal of Gastroenterology, vol. 88, no. 10, pp. 1700-1704, 1993. M. Sugiyama, Y. Atomi, N. Wada, A. Kuroda and T. Muto, "Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing
- biliary strictures: A prospective comparative study with bile and brush cytology," American Journal of Gastroenterology, vol. 91, no. 3, pp. 465-10. R. Schoefl, M. Haefner, F. Wrba, F. Pfeffel, C. Stain, R. Poetzi and A. Gangl, "Forceps Biopsy and Brush Cytology during Endoscopic Retrograde Cholangiopancreatography for the Diagnosis of Biliary Stenoses," Scandinavian Journal of Gastroenterology, vol. 32, no. 4, pp. 363-368, 1997.
- 11. J. Jailwala, E. L. Fogel, S. Sherman, K. Gottlieb, J. Flueckiger, L. G. Bucksot and G. A. Lehman, "Triple tissue sampling at ERCP in malignant biliary," Gastrointestinal Endoscopy, vol. 51, no. 4, pp. 383-390, 2000. 12. U. Navaneethan, M. K. Hasan, V. Lourdusamy, B. Njei, S. Varadarajulu and R. H. Hawes, "Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review," Gastrointestinal Endoscopy, vol. 82, no. 4, pp. 608-614, 2015.

13. Y. K. Chen, M. A. Parsi, K. F. Binmoeller, R. H. Hawes, D. K. Pleskow, A. Slivka, O. Haluszka, B. T. Petersen, S. Sherman, J. Devière, S. Meisner

- and P. Stevens, "Single-operator cholangioscopy in patients requiring evaluation of bile duct disease or therapy of biliary stones (with videos)," Clinical Endoscopy, vol. 74, no. 4, pp. 805-814, 2011. 14. D. M. DTH, M. EGH, B. WM, D. M. ETH, B. F, K. A, M. SE and A. A. EL, "Endoscopic retrograde cholangiopancreatography versus endoscopic ultrasound for tissue diagnosis of malignant biliary stricture: Systematic review and meta-analysis.," Endoscopic Ultrasound, vol. 7, no. 1, pp. 10-
- 15. A. Sadeghi, M. Mohamadnejad, F. Islami, A. Keshtkar, M. Biglari, R. Malekzadeh and M. A. Eloubeidi, "Diagnostic yield of EUS-guided FNA for malignant biliary stricture: a systematic review and meta-analysis," Gastrointestinal Endoscopy, vol. 83, no. 2, pp. 290-298, 2016.

