DYNAMIC BALANCE RETRAINING USING GAIT PERTURBATIONS IN INDIVIDUALS WITH MODERATE-TO-SEVERE TRAUMATIC BRAIN INJURY

<u>Andréanne</u> Juneau¹, Nour Saade², Dahlia Kairy³, Philippe Fait⁴, Cyril Duclos³.

¹ Centre de réadaptation Constance-Lethbridge, CIUSSS Centre-Ouest-de-l'Île-de-Montréal, and Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montréal, Canada. ² Département des Sciences de l'activité physique, Université du Québec à Trois-Rivières (UQTR), and CRIR, Montréal,

² Département des Sciences de l'activité physique, Université du Québec à Trois-Rivières (UQTR), and CRIR, Montréa Canada.

³École de réadaptation, Université de Montréal, and CRIR, Montréal, Canada.

⁴ Département des Sciences de l'activité physique, UQTR, Montréal, Canada.

Contact person: Andréanne Juneau <u>a.juneau.clethb@ssss.gouv.qc.ca</u>

Abstract

- Individuals with traumatic brain injury (TBI) often present with balance problems associated with a decrease in their social participation.
- An innovative approach consists in using perturbations on a split-belt treadmill to improve dynamic balance.
- The aim of this study was to quantify the effects of a training program including perturbations on a split-belt treadmill on dynamic balance, walking speed, balance confidence and social participation in individuals with TBI at the social integration rehabilitation phase or at a chronic stage.

Methods

- 8 individuals were recruited between March, 2017 and March, 2018.
- Inclusion criterias were: diagnosis of moderate or severe TBI in social integration rehabilitation phase or chronic stage, subjective and/or objective balance trouble, be able to walk on a treadmill with no technical aid.
- Intervention: 6 training sessions on a 3-week period on a split-belt treadmill with:
 - self-perturbations (head movements, 360° turns, dual cognitive task (Stroop))
 - unexpected perturbations (stop-and-go, predictable and unpredictable slips and trips by increasing or decreasing the speed of one treadmill belt for one step at a time).
- Outcome measures: Mini-BESTest, Community Balance & Mobility Scale (CB&M), comfortable and fast walking speed, Reintregration to Normal Living Index and Activity-Specific Balance Confidence Scale; measured twice before and twice after.

Results

•Results indicated a statistically significant improvement of 2.1(1.5)/28 at the Mini-BESTest and 7.0 (6.9)/96 at the Community Balance and Mobility Scale (CB&M).

•No significant change in speed, balance confidence and social participation were observed despite some variations for in some individuals.

•A learning effect was observed between the two pre-intervention assessments.

Figure 1: Group score for Mini-BESTest (max /28) for the two evaluations before (Pre1 and Pre2) and after (Post1 and Post2) training.

Participants	Gender (F/M)	DOB	Age at time of TBI	Time since TBI	Type of TBI (M/S)	GCS at admissio n (/15)	Change in Mini- BESTest	Change in CB&M	Change in comfortable speed	Change in fast speed	Change in ABC	Change in RNLI
1	М	1987-10-02	28	8m	S	10	<mark>4</mark>	<u>14</u>	0.23	0.1	-8	-18
2	М	1960-11-16	52	4y 9m	S	6	2	7	-0.14	-0.13	10	2.7
3	М	1977-11-26	29	10y 4m	S	5	2	6	0.06	-0.02	2	<mark>13.7</mark>
4	М	1941-08-05	75	10m	S	12	1	15	0.03	-0.06	-7	-4.54
5	F	1989-10-02	19	8y 10m	S	4	0	7	-0.04	-0.27	1	2.7
6	М	1956-01-21	60	1y 5m	М	9	4	-6	-0.02	1.12	10	<u>19.5</u>
7	М	1946-10-16	69	, 1y 7m	М	ND	2	7	0.01	-0.26	5	<u>13.6</u>
8	М	1974-01-06	43	, 8m	М	14	<u>5</u>	5	-0.2	0.01	-2	-6.4

Figure 2: Group score for CB&M (max /96) for the two evaluations before (Pre1 and Pre2) and after (Post1 and Post2) training

F: Female, M: Male, DOB: Date of Birth, TBI: Traumatic Brain Injury, M: Moderate, S: Severe, GCS: Glasgow Coma Scale, CB&M: Community Balance and Mobility Scale, ABC: Activity-specific Balance Confidence scale, RNLI: Reintegration to Normal Living Index. Change above MCID in bold and underlined.

Conclusions

- · We saw variable effects depending on individuals.
- Minimally clinical important differences (MCID) for the Mini-BESTest (4/28) and for RNLI (7%) as well as minimal detectable change (MDC) for the CB&M (8/96) were reached by 3, 3 and 2 individuals, respectively. The training program thus had an important effect in 6 out of 8 participants.
- Cognitive impairments may have affected results for the two questionnaires (eg: two individuals with clinically important difference in balance and lower scores at the questionnaires).
- Training parameters may be questioned: number of sessions and timeframe of the study and applicability of the protocol in a social integration rehabilitation phase or at a chronic stage. (eg: 20 minutes every week or second week over a 8-12 week-period).
- The project was presented to the physiotherapist team of the Constance-Lethbridge Rehabilitation Center in September 2018. The possibility of a pragmatic study on the use of the modality was proposed for 2019.

References

- Vasudevan EV, Glass RN, Packel AT. Effects of traumatic brain injury on locomotor adaptation. J Neurol Phys Ther. 2014 Jul;38(3):172-82.
- Ilmane N, Croteau S, Duclos C. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces. Journal of Biomechanics. 2015;48(3):441-448.
- McCrum C, Gerards MHG, Karamanidis K, Zijlstra W, Meijer K. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. European Review of Aging and Physical Activity. 2017;14(1):3.
- Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther 2015 May;95(5):700-9.
- Gerards MHG, McCrum C, Mansfield A, Meijer K. Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatrics & Gerontology International. 2017;17(12):2294-2303.
- Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the mini- BESTest and Berg Balance Scale in patients with balance disorders. PhysTher 2013 Feb;93(2):158-67.
- Howe JA, Inness EL, Venturini A, Williams JI, Verrier MC. The Community Balance and Mobility Scale--a balance measure for individuals with traumatic brain injury. <u>Clin Rehabil.</u> 2006 Oct;20(10):885-95.
- Mayo et al. Getting on with the rest of your life following stroke: a randomized trial of a complex intervention aimed at enhancing life participation post stroke. <u>Clin Rehabil.</u> 2015 Dec;29(12):1198-211.