

The Consequences of Youth Sport-Related Knee Injury Implications for Secondary Prevention of Osteoarthritis

Jackie Whittaker PT, PhD¹, Clodagh Toomey PT, PhD², Linda Woodhouse PT, PhD¹, Jacob Jaremko MD, PT³, Alberta Nettel-Aguirre Pstat, PhD², Carolyn Emery PT, PhD²

¹Faculty of Rehabilitation Medicine, University of Alberta, Canada

Canadian Physiotherapy Association November, 2018

²Sport Injury Prevention Research Centre, University of Calgary, Canada

³Faculty of Medicine & Dentistry, University of Alberta, Canada

The Growing Burden of Osteoarthritis

Significance

OA is expected to become the 4th leading cause of disability worldwide by 2020

Increase in prevalence from 12.5% (2010) to 25% (2040)

Increase in prevalence from 26.6% (2012) to 29.5% (2032)

Increase in prevalence from 12% (2008) to 25 (2030)

Woolf et al 2003, Lawrence et al 2008, Vos et al 2012, Sharif et al 2016

Unsustainable Trends

Significance

OA is the fastest growing disease globally based on Years Lived with Disability

Increase in direct costs from \$2.9 billion (2010) to \$5.8 billion (2040)

54% increase in direct medical costs between 1993 and 2002

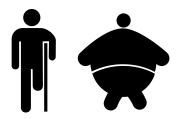
37% and 48% increase in hip and knee replacements between 2015 and 2020

Levy et al 1993, Woolf et al 2003, Pen et al 2005, Vos et al 2012, Sharif et al 2016, Hunter & Bowden 2017

Prevention of Osteoarthritis

Epidemiological Model

UPSTREAM SHIFT IN OUR APPROACH TO MANAGEMENT


Primary Prevention

Secondary Prevention

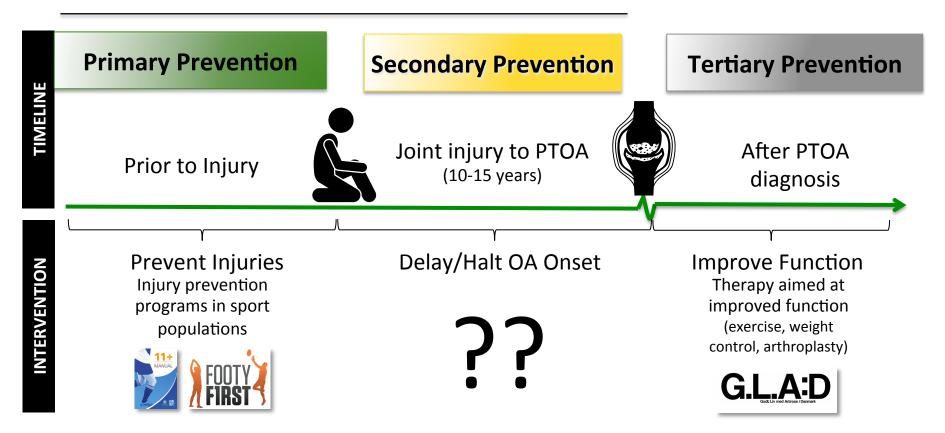
Tertiary Prevention

SUSCEPTIBILE

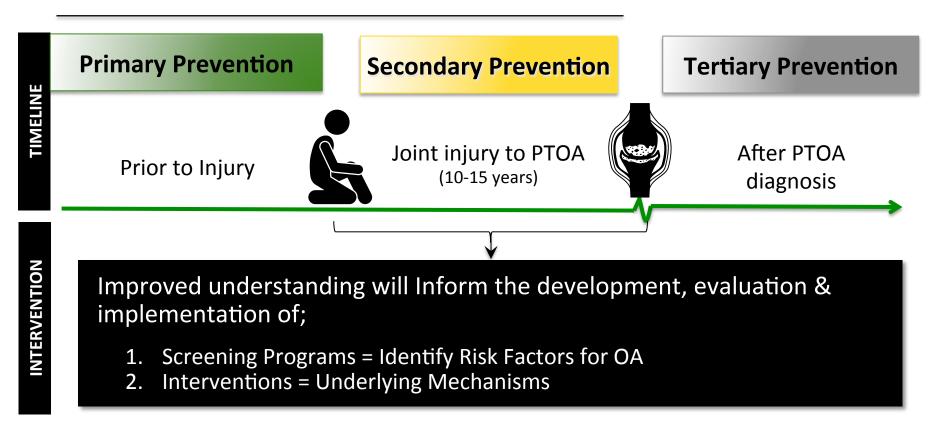
Prevent or reduce risk factors in susceptible populations

PRE-SYMPTOMATIC

Identify and slow down the onset of OA in preclinical populations


DISEASE

Slow progression in those with OA (improve function)


Prevention of Post-Traumatic Osteoarthritis

Timeline of Events & Interventions

Prevention of Post-Traumatic Osteoarthritis

Timeline of Events & Interventions

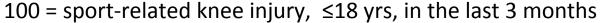
Alberta Youth PrE-OA Study

Ongoing Longitudinal Cohort Study

Secondary Prevention – Knee PTOA

0-3 yrs post-injury

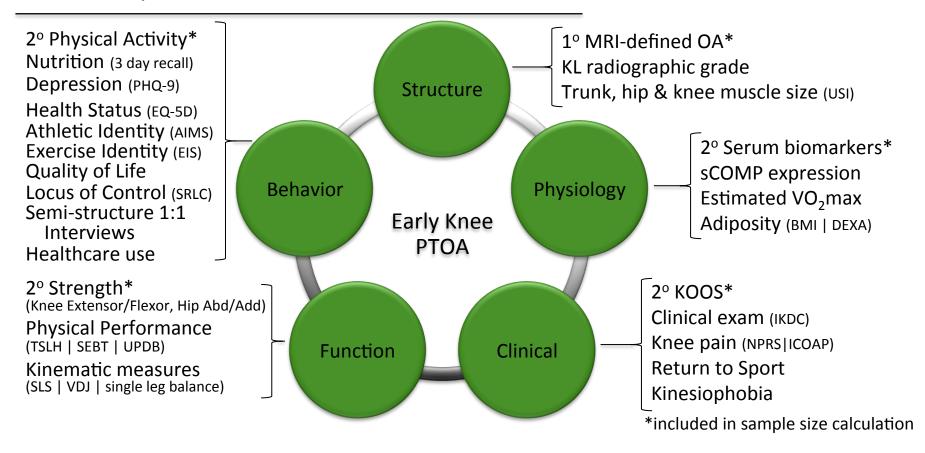
3-10 yrs post-injury



100 = sport-related knee injury, ≤18 yrs, 3-10 years earlier

100 = age, sex and sport matched controls

100 = age, sex, and sport matched controls


Followed annually on a diverse set of outcomes for 3 yrs.

Outcomes

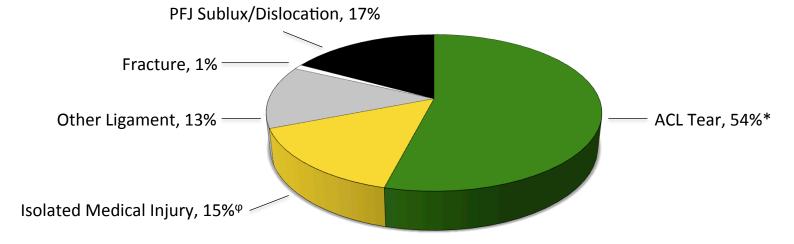
PrE-OA Study

Participant Characteristics

Baseline Follow-up 1 3-10 years

PrE-OA Study

Characteristics	Uninjured n=100	Injured n=100
Sex (% female)	55	55
Age (yrs; median, range)	22 (15-26)	22 (16-26)
Age at Injury (yrs; median, range)	-	16 (9-18)
Injury to Follow-up 1 (yrs; median, range)	-	6.9 (3-10)
# Index Knee Surgeries	0	63*
# Contralateral Knee Injuries	0	23 [§]
# Contralateral Knee Surgeries	0	15^{ϕ}
# Index Lower Limb Injuries	17	13
# Contralateral Lower Limb Injuries	13	16

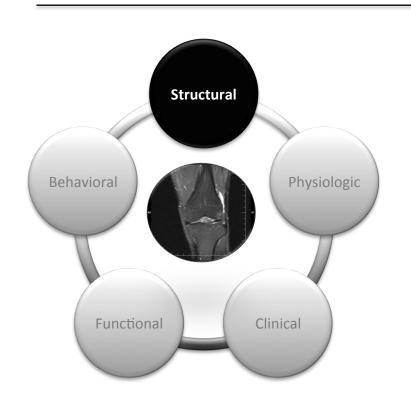

^{*54} ACL reconstructions, § φ11 of these were ACL reconstructions

Injury Definition

PrE-OA Study

Baseline Follow-up 1 3-10 years

KNEE INJURY Ligament, meniscal or other intra-articular tibio or patello-femoral injury requiring both MEDICAL CONSULTATION & DISRUPTED SPORT PARTICIPATION



*all under went ACL reconstruction, 36 had concomitant meniscal injuries $^{\circ}7$ of these had arthroscopic surgery

Whittaker et al 2015, 2107

MRI-Defined OA

Surrogate Structural Outcome of Early PTOA

Hunter et al 2011

MRI Defined OA

Bilateral clinical series (1.5 Tesla): axial, coronal & sagittal proton density, proton density fat saturation

MOAKS rating by radiologist blinded to injury

MRI defined OA Criteria:

Osteophyte AND full-thickness cartilage loss OR

1 of the above plus 2 of the following; Sub-chondral bone marrow lesion Meniscal disruption Partial thickness cartilage loss

MRI-Defined OA

Surrogate Structural Outcome of Early PTOA

Structural MRI

Clinical

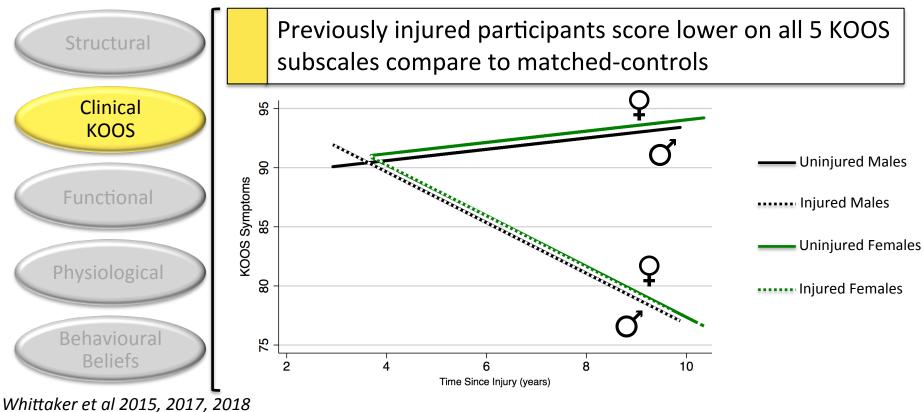
Functional

Physiological

Behavioural Beliefs

Whittaker et al 2017

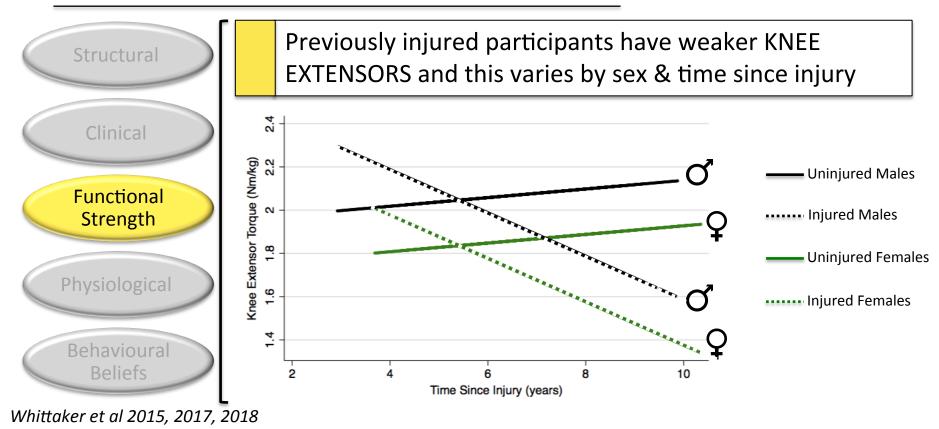
Structural changes consistent with OA are not unique to ACL tears or damaged menisci


The odds of MRI defined OA 3-10 years after knee injury vary by injury history, injury type and surgery

Surgery / Injury Type	Odds of MRI-defined OA (95%CI)	
Knee Injury	10.0 (2.3,42.8)*	
Grade I-III MCL or LCL	2.0 (0.18,22.1)	
3° ACL ^φ	11.5 (1.4,85.2)*	
Knee Surgery	13.5 (1.7,99.4)*	
3° ACL &/or meniscal injury	14.5 (1.8,106.5)*	

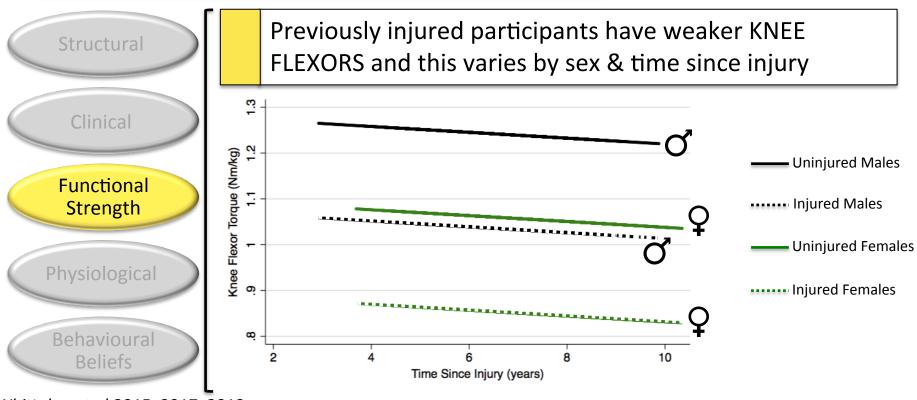
Clinical Symptomology (KOOS)

Knee Injury and OA Outcome Score – Modifiable Risk Factor



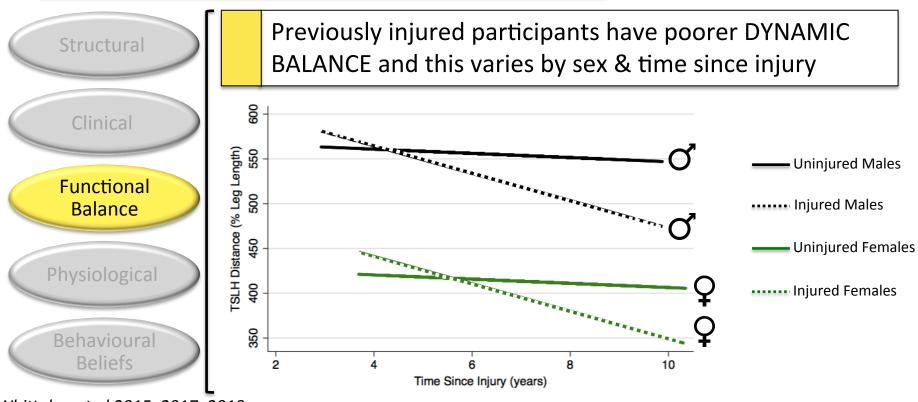
Knee Extensor Strength

Dynamometer – Modifiable Risk Factor



Knee Flexor Strength

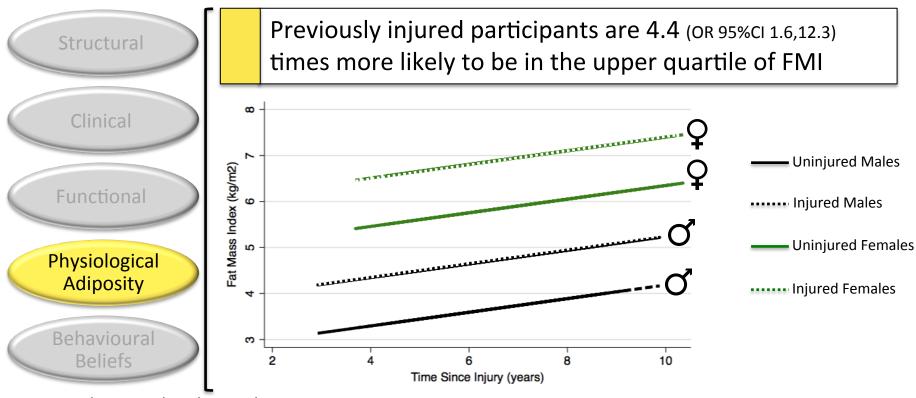
Dynamometer – Modifiable Risk Factor



Whittaker et al 2015, 2017, 2018

Dynamic Balance

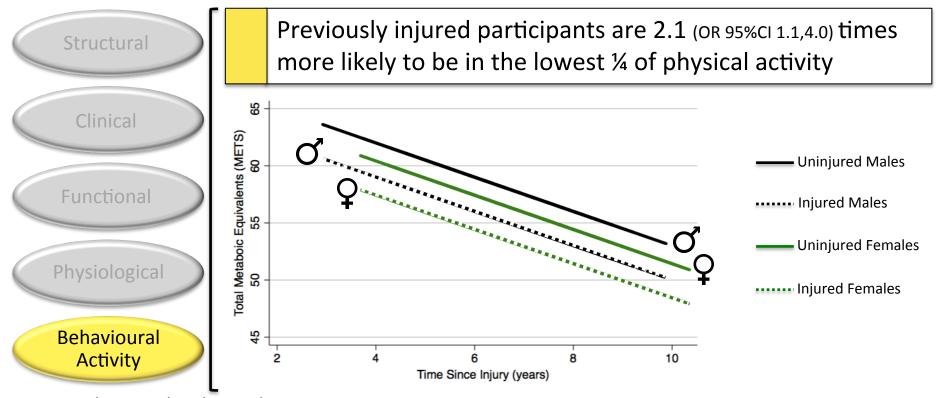
TSLH – Modifiable Risk Factor



Whittaker et al 2015, 2017, 2018

Adiposity

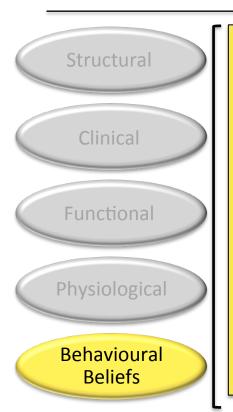
Dual X-ray Absorptiometry- Modifiable Risk Factor



Toomey et al 2017, Whittaker et al 2015, 2017, 2018

Physical Activity (self-reported)

Godin Leisure Time Questionnaire - Modifiable Risk Factor



Toomey et al 2017, Whittaker et al 2015, 2017, 2018

Beliefs re: Sport, Injury and OA

Behavioral; Semi-structured Interviews (n=19, purposive sample)

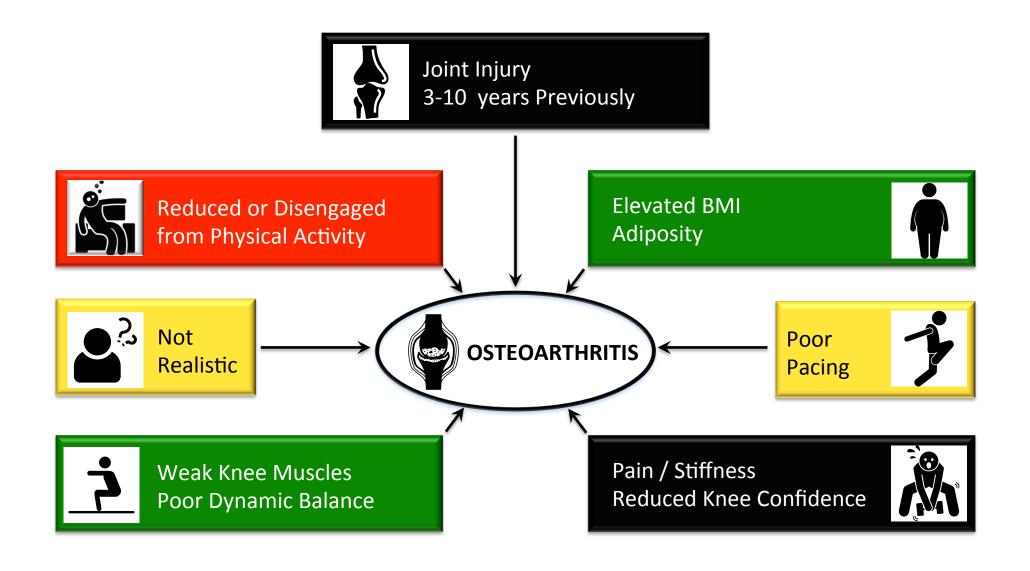
Dominant themes:

Acceptance

Varying & often unrealistic degrees of acceptance about the impact of injury on sporting ability & future PTOA

Resiliency & Determination

Highly motivated to recover & meet injury with resiliency – do not pace well


Knee Confidence

Knee requires ongoing protection

Evolving Athletic Identity

Influenced by injury & shifting life priorities

Ezzat et al 2018

ACL Tear ± Meniscus
Osteochondral Lesion

Re-injury No RTS Criteria

Lacking Info.

Elevated BMI, Adiposity

Reduced or Disengaged from Physical Activity

Poor Pacing

Frequent Flare-ups

Insufficient Rehabilitation
Pain / Stiffness
Reduce Knee Confidence

Weak Knee Muscles Poor Dynamic Balance Vitamin D, K, Deficient

Implications

Future Directions

Pre-existing Risk Factors

Do injured youth have ↑adiposity, ↓strength or participate in less physical activity at the time of injury

Mechanisms

What is contributing to changes in ↑adiposity and ↓strength? (Diet, activity, psychosocial factors, inaccurate beliefs, etc.)

Sub-groups

Are there different phenotypes / sub-groups of at risk individuals (i.e., OA phenotypes.)

Acknowledgements

CO-INVESTIGATORS

Carolyn Emery PT PhD
Linda Woodhouse PT PhD
Alberto Nettle-Aguire PhD, PStat
Janet Ronsky PEng PhD
Roman Krawetz PhD
Jacob Jaremko MD PhD
Clodagh Toomey PT, PhD
Deborah Marshall PhD
Patricia Doyle-Baker DrPH
Raylene Reimer PhD
Nick Mohtadi MD
Preston Wiley MD
Gregor Kuntze PhD

PATEINT PARTNERS

Caley McElwan Andrea Pajkic

Steve Boyd PhD

Carla Prado PhD

Brent Edwards PhD

RESEARCH COORDINATORS

Gabriella Nasuti MSc Jamie Rishaug Lisa Loos Monika Viktorova MSc Ruth Fazio

TRAINEES

Jennifer Baltich MSc, PhD
Maurice Mohr BSc, MSc, PhD Student
Allison Ezzat PT PhD student
Christina Le PT PhD student
Linda Truong PT PhD student
Wasim Labban PT MSc PhD student
Jordan Loudon BSc, MSc
Kristen Lorenzen BSc MSc
Chris Holt PT, MSc Student
Brianna Ghali BSc (Kin) Student
Josh Kennedy BSc (Kin) Student
Miki Nguyen BSc (Kin) Student

Andrea Pajkic BSc (Kin) Student

FUNDING; CIHR IRSC Canadian Institutes of Instituts de recherche en santé du Canada Arthritis SOCIETY Pediatric Rehabilitation Research Program ALBERTA INNOVATES ALBERTA Osteogrithritis Team Children's

McCaig Institute

for Bone and Joint Health

Where the world of physical therapy meets

Preliminary Program Announced Registration Open

www.wcpt.org/wcpt2019 #WCPT2019

Hosted by:

