Understanding the causes of SL changes after repeated exposure to a split-belt treadmill gait protocol post-stroke: a pilot study

Martina Betschart, Ph.D. Bradford J. McFadyen, Ph.D. and Sylvie Nadeau, Ph.D.

Corresponding authors: Sylvie Nadeau: sylvie.nadeau@umontreal.ca
Martina Betschart: mbetschart42@gmail.com
BACKGROUND AND PURPOSE

Stroke

Deficits in gait

| Gait speed, endurance (e.g., Ada, 2013, Dunn, 2015) | Step length asymmetry (e.g., Patterson, 2008, 2010) |

RESISTANT TO CONVENTIONAL APPROACHES

e.g.: 14% (n=5/35) reduced step length asymmetry vs 30% who improved speed and 62% for balance (Patterson, 2015).

NEW APPROACH (error-augmentation based principle)

- Video

Healthy subjects: Induces asymmetry in step length

CURRENT KNOWLEDGE:

Split-belt treadmill walking with a error-augmentation based protocol:

- Neurophysiological mechanisms (healthy and post-stroke)
 - ✔
- Improvements in SL symmetry
 - Short-term (some steps) ✔
 - Long-term (4 weeks) ✔
- Transfer of effects on the floor ✔
- Effects of speed adjustment among sessions on gait parameters ❌
- Effects on gait
 - Speed ✔
 - Endurance ❌
- Effects on joint biomechanics and muscle activity ❌
 - Long-term effects (4 weeks) ❌
 - During walking over the ground ❌
- Effects of speed adjustment among sessions ❌

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Adaptation</th>
<th>Post-adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL Asymmetry</td>
<td>Asymmetry</td>
<td>Symmetry</td>
</tr>
<tr>
<td>SLOW</td>
<td>SLOW</td>
<td>FAST</td>
</tr>
<tr>
<td>SLOW</td>
<td>MTS</td>
<td>MOTS</td>
</tr>
</tbody>
</table>

If shorter step on faster belt

(i.e.: Reisman et al, 2007; Lauzière et al, Betschart et al, 2017)
METHODS

Study Protocol – Training intervention in a clinical setting

- Heart rate and blood pressure
- Modified Borg Scale (<5)
- 20 minutes of walking at a 2:1 speed ratio

2 Groups:
- Paretic FAST
- Non-paretic FAST

* 2x speed of slow belt

* Tested prior to each session

Modified when compared to Reisman et al. (2013) with the aim to improve speed and endurance in addition to symmetry

Outcome Parameters

- 3D motion analysis (Optotrk)
- Ground reaction forces (GRF)
- Bilateral EMG (12 muscles)
 - **Distal**: Tibialis anterior, Gastrocnemius lateralis,
 - **Proximal**: Vastus lateralis, Rectus femoris, Semitendinosus, Gluteus Medius
 - Band-pass filter (20-450 Hz)
 - RMS (amplitude and signal duration)
 - Amplitude normalization with peak reference value from walking over ground

IEK = International Society of Electrophysiology and Kinesiology

Gait parameters
- Step length (SL) and SL symmetry;
- Walking speed (10 meter Walking Test);
- Functional mobility (Timed Up & Go Test);
- Endurance (6 Minute Walking Test)

Biomechanical parameters and muscle activity
- Lower limb net joint moments
- Muscle activity (six lower limb muscles)

Statistical Analysis

- Repeated measures ANOVAs and *Wilcoxon-signed rank tests*
- Level of significance: $p = 0.05$ adjusted with post-hoc Bonferroni correction.
Effects on gait

- Speed IMPROVEMENTS
- Endurance NO EFFECT

Effects on joint biomechanics and muscle activity

- Long-term effects (4 weeks) effects at the FOLLOW UP > compared to POST-TRAINING
- During walking over the ground: particularly SIDE trained on the FAST BELT PLANTARFLEXORS seem main contributor to symmetry changes

REFERENCES

ACKNOWLEDGMENTS

This study was financed by the Réseau provincial de recherche en adaptation-réadaptation (REPAR) and the OPPQ. Martina Betschart was holding a scholarship from the Équipe de Recherche en Réadaptation SensoriMotrice (ERRSM).