Physiotherapists’ use of evaluation measures to guide decisions about ankle-foot orthoses for children with cerebral palsy

Kyra Kanea,b, Joel Lanovazc, and Kristin Musselmana,d,e

aSchool of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, SK
bSaskatchewan Health Authority, Children’s Program, Regina, SK
cCollege of Kinesiology, University of Saskatchewan, Saskatoon, SK
dToronto Rehabilitation Institute, University Health Network, Toronto, ON
eDepartment of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON

For more information contact kyra.kane@saskhealthauthority.ca

This data has been published in: Kane, K.J., Lanovaz, J.L., & Musselman, K.E. (2018). Physical therapists’ use of evaluation measures to inform the prescription of ankle-foot orthoses for children with cerebral palsy. \textit{Phys Occup Ther Ped}
Introduction

- PTs play a key role in deciding which AFO design will optimize a child’s mobility & monitoring effectiveness
- Evaluation is necessary for individualized AFO prescription & successful orthotic intervention (Kane et al., 2018)
- Understanding current orthotic evaluation practices may contribute to more consistent, effective clinical practices
- Therefore the aim of this survey study was to examine:
 1) What is evaluated and how (initially & post-fitting)?
 2) How does evaluation inform prescription & adjustments?
 3) Recommendations to improve prescription?

Methods

Participants: PTs working with children with CP in Canada

Online survey
- Created by researchers & 5 content experts
- 28 questions examined
 - Types of AFOs & indications
 - Plantarflexed ankle angle in the AFO (AA-AFO): indications, perceived benefits & harms
 - How evaluation informs AFO type, AA-AFO, adjustments

Analysis
- Closed-ended questions: descriptive statistics
- Open-ended responses: 3 researchers conducted a conventional content analysis to establish themes (Hsieh & Shannon, 2005)
Results

- 60 PTs from 10 provinces completed the survey
 - ~ 50% from ON and BC; 89% publicly-funded
 - Median 10y pediatric experience (<1y-42 y)
 - Access to orthotists: 52% on-site; 37% >1km away

Theme 1. Focus on impairment-level measures

- Gait was primarily evaluated by non-standardized observation; more objective tools (e.g., goniometer) used to assess tone & ROM
- AA-AFO was influenced by ankle ROM and tone (R1 or “first catch”/R2 or “end range”)
- AFO type was influenced by ankle DF ROM and PF tone (R1/R2), strength, alignment, gross motor function, gait pattern
- Most follow-up adjustments aimed to improve comfort/fit
 - <20% of adjustments aimed to improve gait pattern

Theme 2. Lack of confidence/ knowledge

- Median confidence in AFO decisions = 57.5 (0=not confident; 100=++confident)
- AA-AFO: Uncertain about whether PF may help or harm
 - “It’s a big grey area and each child is different.”
- AFO type: Most confident about indications for solid & hinged, but inconsistent & nonspecific
 - Less familiar with ground reaction AFOs, energy storage and return (ESR) AFOs, posterior leaf spring, & carbon fiber AFOs

Theme 3. Inconsistent practices between PTs

- Interpretation of findings and decision-making varied
 - Decisions about AA-AFO: Plantarflexion may “impair” OR “improve” gait quality
 - Decisions about AFO type: “prefer hinged AFOs for all ambulatory children” OR “default to solid unless there is optimal range, strength, and bony alignment”

- Inconsistent interpretation of indications for different AFO types e.g., How much ROM is needed to use a hinged AFO?
 - “Some active dorsiflexion”
 - “Neutral”
 - “Adequate ROM”
 - “>10°”
 - “Enough range past neutral to tolerate a hinged AFO”
Most important constructs to assess

- ROM
- Gait pattern
- Muscle tone
- Goals
- Muscle strength
- Function/GM skills
- Bony alignment of foot/leg
- Shank kinematics in gait
- Comfort/fit
- Leg length
- Participation
- Parent/child satisfaction/preference
- Endurance
- Spatiotemporal (e.g., speed)

% of respondents
Recommendations for practice and research

Use objective measures
- Objectively document goals & outcomes
- Use measures like the COPM, GAS, EVGS & video
- Identify and develop outcome measures for AFOs

Prioritize participation
- Use standardized measures
- Set participation goals; ↓ focus on impairments
- Study effects of AFOs on participation

Increase consistency of PT practises
- Integrate current evidence in practice
- Education about orthotic/tuning literature
- Study effects of different AFO types and aspects of the prescription
- Develop evidence-based best practice guidelines

Address biomechanical goals in follow-up
- Support PT-orthotist collaboration
- Increase knowledge of AFO-footwear combination tuning
- Optimize AFO-footwear combination biomechanics to address goals
- Evaluate efficacy of tuning and effects on activity/participation

Conclusions
- Non-standardized, observational evaluation methods and impairment-level constructs appear to guide AFO prescription decisions
- Inconsistent practices may reflect efforts to individualize prescriptions, or may reflect the paucity of evidence-based clinical guidelines
- Best practice guidelines and standardized tools to assess meaningful outcomes may improve clinician confidence, consistency, and outcomes

COPM: Canadian Occupational Performance Measure (Law et al., 1994); GAS: Goal Attainment Scaling; EVGS: Edinburgh Visual Gait Score (Read et al., 2003)